Product Description
Lieb-herr D924 D926 Engine Parts V-RIPPED BELT 4981201 R924 R934 R944 LTP engine belt 4981201A
LTP brand V-RIPPED BELT
Lieb-herr reference: 4981201
LTP reference: 4981201A
Used for Liebherr machine R904 R904C R914 R914B R924 R924B R934 R934B R944B R944 R954 R954B A9.
CZPT offers drive line parts and engines for Liebherr D924 mobile cranes and heavy machinery equipment.
Visit our parts catalog and send your request for quote!
Related Belt as below:
LTP brand V-RIPPED BELT
Lieb-herr reference: 4981124
LTP reference: 4981124A
Used for Liebherr machine R964 R964C R966 R970 R974 R976 R980 PR712 PR722 PR732 PR742
Engine D924 D926 D9508
LTP brand V-RIPPED BELT
Lieb-herr reference: 4981201
LTP reference: 4981201A
Used for Liebherr machine R904 R904C R914 R914B R924 R924B R934 R934B R944B R944 R954 R954B A9
LTP reference: 110571A
Used for Liebherr machine R906 R914 R916 R924 R926 R934 R936 R944 R946 R950 R954 R956 R960 A9
LTP reference: 11347044A
Used for Liebherr machine R966 R970 R976 R980 LH150 PR766 PR776 R91
LTP reference: 11393514A
Used for Liebherr machine R91
LTP reference: 11482412A
Used for Liebherr machine R926 R928 R930 R934 R936 R938 R940 R945 R946 R950 R956 R960 L550 L556 L566 L576 L580 L586 PR72605LGP PR7264FLGP PR726 PR73605 PR7363 PR736 PR74605 PR7463 PR746 PR756 PR7563 PR7564 RL46 RL56 RL66 LH110 LH30 LH40 LH50 LH60 LH80
Engine D934 D936 D944 D946
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CCC, ISO9001, CE |
---|---|
Standard Component: | Non-Standard Component |
Technics: | Press |
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Are there any specific guidelines for aligning pulleys and V-belts?
Proper alignment between pulleys and V-belts is essential to ensure smooth operation, minimize wear, and maximize the efficiency of the belt drive system. Here are some specific guidelines for aligning pulleys and V-belts:
- Parallel Alignment:
- Angular Alignment:
- Alignment Tools:
- Adjustment Methods:
- Regular Inspections:
- Manufacturer Recommendations:
The pulleys should be aligned parallel to each other, meaning that the axes of the pulleys should be in the same plane. This ensures that the V-belt runs straight and evenly between the pulleys. Misalignment can cause the belt to run at an angle, leading to increased wear and reduced efficiency.
In addition to parallel alignment, the pulleys should be aligned angularly. This means that the pulley faces should be perpendicular to the belt’s direction of travel. Angular misalignment can cause the belt to twist and create uneven tension, resulting in increased wear and potential belt failure.
To achieve proper alignment, various alignment tools can be used, such as straightedges, laser alignment tools, or alignment software. These tools help in measuring and adjusting the alignment of pulleys, ensuring precise parallel and angular alignment.
To adjust the alignment of pulleys, different methods can be employed. Common adjustment methods include shimming, moving the pulley on its shaft, or using adjustable pulleys. The specific method depends on the type of pulley and the adjustment capabilities of the system.
Regular inspections are crucial to identify and correct any misalignment issues promptly. Inspect the pulleys visually and check for any signs of misalignment, such as uneven belt wear, belt tracking issues, or abnormal belt noise. If misalignment is detected, take corrective measures to realign the pulleys.
Always refer to the manufacturer’s guidelines and specifications for pulley alignment. Manufacturers often provide specific alignment tolerances and recommendations for their products, considering factors such as belt type, load, and operating conditions. Follow these recommendations to ensure proper alignment and optimize the performance of the belt drive system.
By following these guidelines for aligning pulleys and V-belts, you can minimize wear, reduce the risk of belt failure, and maximize the efficiency and lifespan of the belt drive system.
Are there any safety considerations when working with V-belts?
Working with V-belts involves certain safety considerations to ensure the well-being of personnel and the proper functioning of the belt drive system. Here are some important safety considerations when working with V-belts:
- Lockout/Tagout: Before performing any maintenance or adjustment on a belt drive system, it is crucial to follow proper lockout/tagout procedures. Lockout/tagout involves isolating the power source, de-energizing the equipment, and securing it with locks or tags to prevent unintentional startup or release of stored energy. This ensures the safety of personnel working on or near the V-belts.
- Personal Protective Equipment (PPE): When working with V-belts, appropriate personal protective equipment should be worn as per the specific tasks and potential hazards. This may include safety glasses, gloves, hearing protection, and protective clothing to safeguard against potential injury from flying debris, pinch points, or contact with rotating parts.
- Training and Familiarity: Ensure that personnel working with V-belts are adequately trained on safe work practices, including proper maintenance procedures, tensioning techniques, and the use of tools and equipment. Familiarity with the specific belt drive system and understanding the potential hazards associated with V-belts is essential for safe operation.
- Machine Guarding: Install appropriate machine guarding to prevent accidental contact with moving V-belts and exposed pulleys. Guards should be designed to prevent access to hazardous areas and comply with relevant safety regulations. Regularly inspect and maintain the guards to ensure their effectiveness.
- Tensioning and Adjustment: Follow proper procedures when tensioning or adjusting V-belts. Use the recommended tools and techniques specified by the manufacturer. Improper tensioning can lead to belt slippage, increased wear, and potential accidents. Avoid working near or reaching into the belt drive system while it is in operation.
- Proper Lifting and Handling: V-belts can be heavy and awkward to handle, especially in larger sizes. When lifting or handling V-belts, use proper lifting techniques and equipment to prevent strains or injuries. Avoid placing excessive stress on the belts during installation or removal.
- Maintaining Cleanliness: Keep the work area clean and free from debris, oil, or other contaminants that may affect traction or create slip hazards. Clean up any spills promptly and use appropriate cleaning methods to avoid slipping or tripping accidents.
- Manufacturer’s Guidelines: Adhere to the manufacturer’s guidelines, instructions, and specifications for the installation, tensioning, maintenance, and replacement of V-belts. Manufacturers provide valuable information on safe operating practices, recommended tension ranges, load capacities, and other relevant safety considerations specific to their V-belt products.
By following these safety considerations when working with V-belts, you can help mitigate potential hazards, reduce the risk of accidents, and ensure the safe and efficient operation of the belt drive system.
How do you measure and select the right size of V-belt for a specific application?
When selecting the right size of V-belt for a specific application, it is important to consider factors such as the pulley diameters, center distance between the pulleys, power requirements, and the desired operating speed. Here is a step-by-step guide on how to measure and select the appropriate V-belt size:
- Identify the pulley diameters: Measure the diameter of both the driving and driven pulleys. Make sure to measure the diameter at the highest point of the pulley groove where the belt rides.
- Determine the center distance: Measure the distance between the center points of the driving and driven pulleys. This is the center distance and it plays a crucial role in determining the appropriate V-belt length.
- Calculate the pitch diameter: The pitch diameter is the effective diameter where the belt contacts the pulley. It can be calculated using the following formula: Pitch Diameter = (Driving Pulley Diameter + Driven Pulley Diameter) / 2.
- Consider the power requirements: Determine the amount of power that needs to be transmitted by the V-belt. This can be in the form of horsepower (HP) or kilowatts (kW). Refer to the manufacturer’s guidelines or engineering specifications to ensure the selected V-belt can handle the required power.
- Choose the appropriate V-belt type: Based on the calculated pitch diameter, center distance, and power requirements, select the type of V-belt that is suitable for the specific application. Consider factors such as load capacity, speed capability, and environmental conditions.
- Refer to V-belt manufacturer’s catalogs: Consult the manufacturer’s catalogs or online resources to find the available V-belt sizes and corresponding part numbers. Cross-reference the calculated parameters with the provided charts or tables to identify the appropriate V-belt size.
- Verify the selection: Double-check the selected V-belt size against the calculated parameters to ensure accuracy. If possible, consult with a technical expert or the manufacturer’s support team to validate the selection.
It is important to note that V-belt sizes are standardized and typically follow specific designations, such as the Classical V-belt designation (e.g., A, B, C, D) or the metric designation (e.g., SPZ, SPA, SPB, SPC). These designations indicate different belt widths and lengths.
In summary, measuring and selecting the right size of V-belt for a specific application involves identifying the pulley diameters, determining the center distance, calculating the pitch diameter, considering the power requirements, choosing the appropriate V-belt type, referring to manufacturer’s catalogs, and verifying the selection. Following these steps will help ensure the proper functioning and longevity of the V-belt in the intended application.
editor by CX 2024-05-09